237 research outputs found

    Conditional Restricted Boltzmann Machines for Structured Output Prediction

    Full text link
    Conditional Restricted Boltzmann Machines (CRBMs) are rich probabilistic models that have recently been applied to a wide range of problems, including collaborative filtering, classification, and modeling motion capture data. While much progress has been made in training non-conditional RBMs, these algorithms are not applicable to conditional models and there has been almost no work on training and generating predictions from conditional RBMs for structured output problems. We first argue that standard Contrastive Divergence-based learning may not be suitable for training CRBMs. We then identify two distinct types of structured output prediction problems and propose an improved learning algorithm for each. The first problem type is one where the output space has arbitrary structure but the set of likely output configurations is relatively small, such as in multi-label classification. The second problem is one where the output space is arbitrarily structured but where the output space variability is much greater, such as in image denoising or pixel labeling. We show that the new learning algorithms can work much better than Contrastive Divergence on both types of problems

    Machine learning for neuroscience

    Get PDF

    Modeling Documents with Deep Boltzmann Machines

    Full text link
    We introduce a Deep Boltzmann Machine model suitable for modeling and extracting latent semantic representations from a large unstructured collection of documents. We overcome the apparent difficulty of training a DBM with judicious parameter tying. This parameter tying enables an efficient pretraining algorithm and a state initialization scheme that aids inference. The model can be trained just as efficiently as a standard Restricted Boltzmann Machine. Our experiments show that the model assigns better log probability to unseen data than the Replicated Softmax model. Features extracted from our model outperform LDA, Replicated Softmax, and DocNADE models on document retrieval and document classification tasks.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    Learning generative texture models with extended Fields-of-Experts

    Get PDF
    We evaluate the ability of the popular Field-of-Experts (FoE) to model structure in images. As a test case we focus on modeling synthetic and natural textures. We find that even for modeling single textures, the FoE provides insufficient flexibility to learn good generative models – it does not perform any better than the much simpler Gaussian FoE. We propose an extended version of the FoE (allowing for bimodal potentials) and demonstrate that this novel formulation, when trained with a better approximation of the likelihood gradient, gives rise to a more powerful generative model of specific visual structure that produces significantly better results for the texture task
    corecore